Lagrangian controllability of inviscid incompressible fluids: a constructive approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inviscid incompressible limits of strongly stratified fluids

We consider the motion of a compressible viscous fluid in the asymptotic regime of low Mach and high Reynolds numbers under strong stratification imposed by a conservative external force. Assuming a bi-dimensional character of the flow, we identify the limit system represented by the so-called lake equation the Euler system supplemented by an anelastic type constraint imposed by the limit densi...

متن کامل

An Eulerian-Lagrangian Approach for Incompressible Fluids: Local Theory

We study a formulation of the incompressible Euler equations in terms of the inverse Lagrangian map. In this formulation the equations become a first order advective nonlinear system of partial differential equations.

متن کامل

Integrable Structures for 2D Euler Equations of Incompressible Inviscid Fluids

The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier– Stokes equation under periodic boundary conditions. We are particularly interested in investigating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes equation in which one s...

متن کامل

The Poincaré Recurrence Problem of Inviscid Incompressible Fluids

Nadirashvili presented a beautiful example showing that the Poincaré recurrence does not occur near a particular solution to the 2D Euler equation of inviscid incompressible fluids. Unfortunately, Nadirashvili’s setup of the phase space is not appropriate, and details of the proof are missing. This note fixes that.

متن کامل

Transport and Instability for Incompressible and Inviscid Fluids

Incompressible perfect fluids are described by the Euler equations. We provide a new simple proof for well-posedness for velocities in C1;α and linear and nonlinear instability results using transport techniques. The results have an important consequence: the topology of C1;α is too fine for interesting questions about large time behavior.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2017

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2016043